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Introduction cGAN Model Architecture
Machine learning models have shown remarkable capabilities, often Label
outperforming medical experts in various tasks. However, to reach C

this level of performance, they typically require large, high-quality
datasets. Unfortunately, obtaining such datasets can be challeng-
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consuming process of expert annotation. This is where synthetic >

data comes into play. By simulating realistic and diverse cases, syn-

thetic data helps fill gaps in underrepresented conditions and demo-

graphics, ultimately enhancing the robustness and generalization of Real Data

models while protecting patient privacy. X, eal

Regulatory Barriers and Privacy Risks in Data Figure 3. Conditional GAN (cGAN) architecture

Sharing

This architecture represents a Conditional Generative Adversarial Network (cGAN), where both the Generator and Discriminator are
conditioned on an additional input ¢ (e.g., a class label or structured data).

& Privacy Laws Restrict Collaboration

‘GDPR, HIPAA, and other regulations block cross-institutional medical
data sharing, creating fragmented, siloed datasets.”

A Re-identification Risks

‘Even anonymized data can be reverse-engineered, exposing patient
identities and violating compliance.”

AAN

%5 Biased, Non-Generalizable Models . - . , , , ,
"Models trained on localized data might fail for underrepresented de- This conditioning mechanism enhances control over generated outputs, making cGANs useful for image synthesis, text generation,

mographics (e.g., ethnic minorities, rare arrhythmia).” and structured data generation.
S High Costs of Compliance

‘Legal and technical safeguards for sharing real data strain healthcare
budgets and slow innovation.”

Generator G(z, ¢): Takes random noise z and condition ¢ to generate synthetic data X ¢,
Real & Fake Data: The Generator's output (X ,..) is compared against real data (X..4).
Discriminator D(X, ¢): Evaluates whether input data (real or fake) is authentic while considering the condition c.
Training Objective:
The Generator tries to fool the Discriminator into classifying fake data as real.
The Discriminator learns to distinguish real from fake while ensuring the generated data aligns with c.

Synthetic Data Quality
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Figure 2. Preprocessed heartbeat sample from Kachuee et al. (2018)

9Normal (N), Supraventricular (S), Ventricular (V), Fusion (F),
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Figure 6. Sample of Generated ECG Data

While the results show promise, further refinements are needed. The Savitzky-Golay filter could aid in denoising, but preprocessing
challenges limit its effectiveness. Preprocessing the training data to sinus rhythm might be beneficial.
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